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VISIBILITY PROBABILITIES AND MOMENTS OF MEASURES OF VISIBILITY
ON CURVES IN THE PLANE FOR POISSON SHADOWING PROCESSES

-

By

%*
M. Yadin and S. Zacks )

Technion, Israel Institute of Technology
and
State University of New York at Binghamton

Absgtract

The present study generalizes the methodology developed in [10] to
determine visibility probabilities of points in the plane, when shadows
are cast by a Poisson field of random objects (disks), given a source
of light in the origin. Furthermore, a technique is developed for the
determination of the moments of a visibility measure on star-shaped
curves in the plane. A numerical example is provided to illustrate the
method in some special case.

Key Words: V{s{bilily Measure, Geometrical Probabilities, Poisson
Random Field, Shadowing Process
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1. Introduction

In a previous paper [10] we studied the distribution of a measure
of visibility on a circle, or on specified arcs on the circumference of
the circle, when random number of disks of random size are randomly
distributed within the circle, according to a specified Poissomn field.
These disks obscure the visibility (cast shadows) on portions of the
specifieo arcs, for an observer (source of light) located at the center.
We provided a method of computing the moments of the measure of visibil-
ity, to any desired order by a recursive technique. We also approximated
the dis:ribqtion of the normalized measure of visibility on (0,1l) by a
beta distribution mixed with a two-point discrete distribution. The
present study provides a generalizatiom of the previous methodology to
any star-shaped curves in the plane, when the random disks are distri-
buted in a specified region according to a Poisson field. This general-
ization can treat a wide claés of geometrical probability problems of
line of sight, visibility measures on curves, etc. More specifically,
in Section 2 we introduce the gemeral structure of the field of obstacles
(disks) and the associated visibility problems. In Section 3 we further
develop the basic results to obtain visibility probabilities of noints on
star-shaped curves in the plane. Section 4 is devoted to the definition
and derivation of special functions (K-functions) required for the deter-
mination of visibility probabilities. In Section 5 we discuss the measure
of visibility on smooth star-shaped curves. We develop, furthermore, re-
cursive formulae for the computation of the moments of the measure of
visibility. Section 6 provides a complete theoretical development and
numerical computations of a special case of annular region, chosen to
illustrate the methodology and show an example of actual computatious.
It is shown that the mixed-beta distribution provides an excellent
approximation to the exact distribution of the measure of visibility, in
the special case examined in Section 6.

The literature on shadowing processes is quite limited. Chernmoff
and Daly (2] studies the distribution of length of shadows of disks on a
line. The shadowing problem, however, is a special case of the general

coverage problem on which there is extensive literature. In particular
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refer to the studies of Robbins [5,6], Ailam [1], Greemberg [4], Siegel
(7,8] and the monograph of Solomon [9] which summarizes many of the
important results.
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2. Poisson Random Fields and Visibility Probabilities

Consider a countable set of disks, D , scattered on the plane.
Each disk is specified by a vector (p,9,y) , where p , 0 S p < =,
and 8 , -1 £ 8 <7 are the polar coordinates of its center with
respect to an origin O (observation point, source of light); and
y,0<y<y*, is its diameter. Let SO denote the collection of
"Borel subsets of the space.

SO = {(p,8,y): Osp<wo, -wsf<m, Osy<y*}

For every B¢ S, , let N{B} denote the number of disks such that
(0,8,y)eB (satisfying condition B). If N{B} is a random variable
for every B ¢ 30 then the elements of 0 are called random disks.

In particular, the elements of 0 are called Poisson random disks if

for every B ¢ S0 » N{B} has a Poisson distribution with mean

v(B} =y J fo dG(yle,98)H(dp,d8) |,

where u , O<p<e , is an intensity parameter; H(p,9) and G(ylp,8)

are, respectively, the sigma-finite measure of the location coordinates

(p,8) and the conditional c.d.f. of the diameter, y , given (p,8) .
The special case in which H(dp,d8) = pdpds and G(ylp,8) = G(y) ,

is called the standard case. The standard case is the one in which the

centers of the disks are uniformly distributed on the plane and their
diameters are independent of their location. In this case

Y*
v{B} = ué HB(Y)dG(Y) s

where yu d{s the mean number of disks per unit area; HB(y) is the area
of the region in which disks of diameter y , satisfying condition B ,
are centered.

The theoretical framework is not restricted to random disks in the
plane, but can be generalized to Poisson random objects in the plane,
or even more generally in the space, by replacing the parametric vectors
(p,0,y) with a general parametric vectors (nl,...,np) ,» which charac-
terize the location, orientation, shape and size of a family of objects.

(2.1)

(2.2)

(2.3)
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In such cases S0 and So are properly generalized. In order to sim-

plify the presentation, we restrict attention in the present study to

the family of random disks in the plane. The approach, however, is valid -
for general families. '

A natural requirement for shadowing processes is that the source of

'light (the origin) is uncovered. We therefore introduce the structural

condition

Co = {(0,8,y); $Sp<=, =msd<m, O<y<y*} (2.4)

and assume that all random disks satisfy C In special cases one con-

o Ll
siders more stringent structural conditions, specified by sets C con-
tained in C0 . For example, in the previous paper of Yadin and Zacks

[10] the structural condition considered is

C = {(p,0,7); $s0<1 - &

-m<8<w, O<ysl} .

Let P be a point in the plane. P 1is said to be visible (in light)
if the line segment OP does not intersect any random disk. The set of
all visible points in direction s , -wss<w , starting at the origin, is
called a line of sight, Ls . Let P = (r,s) be a point in the plane,
inorientation s and distance r from the origin. A random disk (p,9,y)

intersects the line segment OP if, and only if, (p,8,y) belongs to
B(r,s) = {(p,8,y); (p0,8) € B(r,s,y), O<ysy*} , (2.5)

where the set B(r,s,y) 1is the set of all points having distances from
0,P smaller than y/2 . (See Fig. l1.) A disk which intersects a line
segment OP is said to cast shadow on P . Accordingly, a point

P = (r,s) 1is visible if N{B(r,s)nC} = 0 . Hence, a line of sight Ls
has magnitude

IIleI = gup{r; N{B(r,s)nC} = 0} . (2.6)

Notice that lIlel is a random variable.
Let P = (r,s) be a point in the plane. Under the Poisson random-
ness assumption, the probability that P 1is visible is
Q(r,s) = P[N{B(r,s)nC} = 0]
= exp{-v{B(r,s)nC}} , 2.7)




Fig. 1. The Geometry Of Disks Casting Shadows On A Point
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where v{B(r,s)nC} is obtained according to (2.2). From this fumnction
one can immediately obtain the distribution of iileI . Indeed,

P{IILSII>£} = Q(&,s), O0sl<» , (2.8)

Notice that in the standard case

v{B(r,s)nCO} = ugr , (2.9)

where § 1is the expected value of a random diameter, Y , whose distri-

bution is G(y) . Indeed, for Y = y , the area of Bo = B(r,s)nC0 is

HB (y) = ry , as can be implied from Fig. 1. Accordingly, the distribu-
0

tion of IILSII in the standard case is exponential with mean 1l/p ,
where o = uf . The present result can be further generalized when the
random objects are not necessarily disks in the plane. The same type‘
of result for infinitesimal objects is given in Feller (3, p.l0].

Let Pl and P2 be two points in the plane having coordinates
(r(sl),sl) and (r(sz),sz) . A necessary and sufficient condition for
P1 and P2 to be simultaneocusly visible is that

N{(B(r(sl),sl)UB(r(sz))nC} =0 .

Since B(r(sl),sl) and B(r(sz),sz) are generally not disjoint it is
more convenient to consider a union of disjoint sets obtainmed in the
following manner. Assume that the points (s,8,y) in C have ori-

entation coordinates in (s',s'']. Define, for amy s in ([s',s''] ,

B (s) = {(p,8,y): E;ZE%E:;7-<O<°; s<8<s''; O<y<y*} (2.10)
and
B_(s) = {(p,9,y): E;IE%Z:ET <p<m; s'<§<s, O<y<y*} . (2.11)

B+(s) and B_(s) are sets of all points in C , on the right and om the

left of the ray with orientation s , which do not intersect it.
Accordingly, if sl<s2 , (B(r(sl),sl)uB(r(sz),sz))nC =

c - (((B_(sl)u3+(sz))nC)u((B+(sl)nB_(sz))nC)) , where A-B 1is the

complement of B with respect to A. Thus, the probability that the

points Pl and P2 are simultaneously visible is

P(sl,sz) = exp{-[v{C} - v{(B_(sl)uB+(s

INC} = v{(B (s))nB_(s,))nC}H} .  (2.12)

2)




------------

Generally, if s’Ssl<...<sn$s" are the orientation coordinates of n
points then the probability that they are simultaneously visible is
P(sl,...,sn) - exp{~[v{c} - v{ (B_(sl)uB*(sn))nC}

n-1

- 1-2-1 v (B+(si)nB_(si+l))nC}]} : (2.13)
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3. V¢ d Curves Under A
Special Field Structure

Consider a star-shaped curve in the plane, C , such that each ray
originating at the origin, O , intersects C at most once. The curve
C 1is specified by a continuous positive function, r(s) , on the domain
[s',8''] , where - %-s s' < s8'"' s /2 . We furthermore require that
r(s) will have almost always continuous derivative.

The field structure is specified by the following assumptions on
the random nature of the distributions of the disks. First, we assume

that the random diameters, YZ,...- of the disks are distributed over

Y.,
interval [a,b], where Osa<b<'=:E . Furthermore, we specify two star-shaped
curves, { and ( , between the origin, O , and C , so that the cen-
ters of the disks are distributed between { and ¥ , and no disk can
either cover the origin or intersect C . More specifically, let

U={u(@); 8'<6<8"'} and W = {w(8); 6'se<6''} ,

where ([s',s''] < [98',8''] < [~ Es‘%] .
structural conditions (see Fig. 2): Every point (p,0,y) in Cl , with

We impose the following field

8 ¢ [8',8'"'] and y ¢ [a,b] should satisfy the two conditions

(C.1l) %-S u(®) < p £ w(®)

(C.2) 1If a point P = (£(s),s) 1is on the circumference
of the disk |(E(s),s) - (w(8),8)] = b/2 , then

w(8) cos (8-s) + [(-'gh)2 - wz(e) s:i.x:xz(e-s)]]'/2 < r(s)

Condition (C.l) guarantees that the origin camnot be covered. Condition
(C.2) assures that C 1is not intersected by any random disk in the
field., Since -~% < sg'<sg'"'"snw/2, B_(s')r\Cl and B+(s")ncl are

disjoint. Let C be the subset of C, containing only disks which

l ———
may cast shadows on C , i.e., they intersect line segments OP , where
PeC . According to (2.7), (2.10) and (2.11) , the visibility proba-

bility of a point P = (r(s),s) on is
P%{B(r(s),s)nC} = 0} =

exp{ EJ{C} - v{B_(3)nC} - v{B+(s)nC}]}

the

(3.1)
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where _
5 viC} = v{Cl} - v{B_(s")rl} - v{B+(s")nC1}
and
8'" w(e)
v{Cl} =y S / H(dg,de)
8' u(8)

Simultaneous visibility probabilities of several points on C are given
generally by formula (2.13).
the expected number of points in the sets B_(s)nC or B+(s)nC

We develop now the technique of determining

~

(3.2)

(3.3)
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Fig. 2. The Geometry Of Disks Casting Shadows On A Curve
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4., Definition And Derivation of the K-Functions

Given a point P = ((s),s) on C , let uK (s,t) and uK*(s,t)
denote the expected numbers of disks (p,9,y) ¢ C1 .with s-ts<6ss and
ssfB<s+t , respectively, which do not intersect the line segment OP .
These functions are given by

s w(e)
K_(S,C) = [ f G(Y(D,S-G)fo,e)ﬁ(do,de) ’
s-t u(g)
and (4.1)
s+t w(8) ' ‘
R (s,£) = [ f G(y(p,8=s)!p,8)H(dp,ds)
s u(8)
where
2psint , if t<w/2
y(po,T) = (4.2)
20 , if t2m/2

Indeed, when [8-s|<w/2 , a disk centered at (p,8) does not inter-
sect OP if its diameter is smaller than 2psinleé-s| . If, however,
|6-g}2m/2 , the diameter of the disk should not exceed 2p .

Thus, according to (3.2) and (4.1) ,

v{C} = v{Cl} - u[R_(s',s'-8") + K+(s",e"-s")] . (4.3)

Similarly, for all s ¢ {s',s''] ,
v{B_(s)nC} = u(K_(s,s-8"') - K_(s',s'-8")]

. %.4)
v{B;(s)nC} = u[K (s,0''~s) - K (s'',0"'=s"")] .
Furthermore, for s'Ssl<szss" ,
v{B, (s;)nB_(s,)nC} =
s,-s s,-s
Wk, (s, 552 + K_(s,, 58] . (4.5)

S,=8
The value t = 3 L was selected in (4.5) to avoid the possibility that

a disk centered at (p,8) with s<6<s+t , which does not intersect OPl
will nevertheless intersect OP2 , and vice versa.
For the purpose of evaluating (4.1) we introduce the auxiliary

functions

P T T T T T S T T S TP -J



,-P‘Tf". . e

-

37" B

o - edalareank

AONAEN R I

K_(s,d8,v) = / G(y(p,s~08)1p,8)H(dp,d8)
0

and (4.6)

v
K, (s,d8,v) = / G(y(p,8-s)|p,8)H(dp,d8)
0

The K-functions are thus given by

S
K_(s,t) = s [K_(s,d8,w(8)) - K_(s,de,u(s))]
s-t

and 4.7)
s+t _
K+(S,t) = ﬁ [K+(S,de,W(e)) - K+(s,de,u(6))]
Notice that G(ylp,9) = 0 for all y<a and G(ylp,8) = 1 for all y2b.
Accordingly, from (4.6)
A(G‘S,V,b)_

K+(s.d9,v) = f G(y(p,08-8)|p,9)H(d0,dB) +
A(8-s,v,a)

v

f H(de,d8) , (4.8)
A(9-8,v,a)

where

X
min(v,ZSinT) . if t<n/2

A(T,v,x) = (4.9)
min(v,-z’s) , if t2%/2

The function K_(s,de,v) can be obtained from (4.8) by replacing 3-s
by s-68 . In the standard case we substitute in the above formula
H(dp,d8) = pdpd8 and G(ylp,8) = G(y) . As an example, we will continue
the derivations of the standard case and a uaiform distribution of Y

over [a,b] , i.e.,

0 y y<a
G(y) = %53 , asysb (4.10)
1l , y>b .
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Under these assumptions one obtains, for 68>s ,

Teal

As seen in (4.11), the function K+(s,de,v), in the standard-uniformcase,
be written as K+(s,d6,v) = A(8-s,v,a,b)d8 . Similarly, K _(s,do,v) =
A(s~8,v,a,b)d8 , where A(8-s,v,a,b) designates the R.d.S. of (4.11).

A(8-s,v,b)

e .
;'. Ky(s:00,0) = 5521 (75,0-0)-a)pd0 +
- A(8-s,v,a)
F +’i29(v2 - Az(e—s,v,b)) »
p
g
2 R -la
: "0 , 1f O-s<sin ()
3 3
9 RN L PYCHPO N NC N SN M PR Y BN 1
. . b=a'3 2 24 2 2v 2v
t ‘ sin” (8-s)
% = . 2 2
F"' , QZQ{\,Z_ e +;b+b ] , 1if sin-l(zb—v)se-s«rlz (6.11)
e !_ 12s1in°(8~s)
2 2. .2
h ' _d_ZQ_ [vz - P—-ti-gi-] » 1f B8-g2n/2
N -

PPN P SO ST YA i . - - - i, - - - S " u_hh‘—_“u“uj
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5. The Measure of Visibility on C and Its Moments

Define the indicator function I(s), s'Ssss'' so that I(s) =1
if (r(s),s) 1is a visible point and I(s)‘- 0 otherwise. The total
measure of the visible part of C 1s given by

L) 1/2

s 2 . 2
V{C} =/ I(s)[r°(s) + (r'(s))°] ds . (5.1)
. s!

V{C} 1is the visibility measure of C . In coverage problems it is known

also as the measure of vacancy (Ailam(1]).
The first moment (expected value) of V(C) 1is

s’l
E{(V(C)} = 5y E{I(s)}&(s)ds , . (5.2)
Sl
) 1/2
where J{£(s) = [rz(s) + (r (s))?] . Moreover,

E{I(s)} = Q(x(s),s)
= exp{~v{C,} + ulK_(s,5-8 ) +

K (s,8''~s)]} : (5.3)

V{Cl} is given by (3.3) In the standard case it assumes the form

e'l 2 2
vic;} = -‘zi ;W) - u“(s)]ds . (5.4)
e'

Generally, for every n22 , the n~-th moment of V{C} is given by

s". s" n n
E{(VMC}} =/ ..../ E{X I(s)} T &(s,)ds,
s' s' i=] i=]
a (5.5)
=a! [ ... [ P(sl,...,sn) i1 Z(si)dsi
i=]l
L]
8ss.S...58 $s'’
1 n
n
Indeed, E{ TN I(si)} is the probability that all the n points are
i=]

simultaneously visible. According to (2.13), (4.3), (4.4), and (4.5) we




B 'V‘f. ry

“obtain, for every s'ss

<...88 ss''
1 sn ?

P(8y,..058,) = exp{-v{C, }Hexp{uk_(s;,8,-9")

(5.6)
n-1 3$,,,-S s -s
v A+l 1 e 5.2 S X
+ uK+(sn,9 sn) +u iil[K+(si , 5 ) + K._(si+l s 5 )]}
The n-th moment of V{C} , for n2l , can be computed according to (5.5)
and (5.6) in the following recursive manner. Define first
¥y(s) = exp{uk_(s,s-6")} . 5.7
and for j=1,2,...,n~1 define
' sy
Wj(s) = g' i(y)?j_l(y)exp{u[K+(Y, <) +
(5.8)
R_(s, SD1Hy
Then, for each n2l1 ,
E(V{C}} = n! exp{-v{C}} .
s (5.9)
. i' L(y)¥ ) (Mexpluk (y,8'" -y)idy
Finally, let L{C} denote the length of C . The distribution of
V{C}/L{C} 4is concentrated on (0,1] , with jumps at the two end points
0 and 1 and absolutely continuous elsewhere. It follows that
lim E{VP{C}}/L®{C} = P{V({C} = L{C}} : (5.10)

e




6. Numerical Determination of the Moments of Visibility in the Standard-
Uniform Case and Annular Sector of Disks

] In the present section we continue the development of the formulae
i. for the recursive determination of the moments, when the disks are dis-
‘. tributed over the annular sector with
:
T m
’ r(s) = ¢ ,-f<s'$s$s"<-2-
kig T
w(®) = w ,-ise'sese"si
and
T \ T
u(8) = u ,-ise'sese"s-z—' .

Here, 0 < b/2 <u<w<r=-D>b/2.
We consider the standard case, where the distribution of the disk diam-
eters, Y , is uniform (4.10). Thus, according to (4.7) and (4.11), the

K(s,t) functions, in the present case, do not depend on s , and satisfy

K. (s,t) = K_(s,t) = K¥(t,w) - K*(t,u) , (6.1)

for all s , s'ss<s'' , where

t
K*(t,v) = éA(T’v’a’b)dt

! -1l,a

s 0 , 1f t<sin (2v)

g -1,.a -1.b

E Kl(t:,v) , 1f sin (-Z?)Stxs:.n (E)

k. - (6.2)
-1, a

: KZ(:,v) , 1f sin (2v)5t<7r/2

: Ky(e,v) , 1f t2m/2

in which
2 1/2

2
Kl(t:.v) = ﬁ{‘;— [(lwz-a ) - 2v cos c] - % v2 [t:

_ 2 1/2 -
- sin l(-z%)] + ;—4 [(lwz-az) - a cotan(t) ]} .

A Ar SR R0

(6.3)

T .
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2. 1/2 1/2 _
Kz(t,v) = Fi—a{%- [(lwz-az) - (4v2-h2) } - %vz [sin l(%')

3 1/2 1/2
-1 a a~ f1 2_ 2 1,022 ,
~ sia ('zv)]+ 2 L‘ (4v-a’) b (VP :”’
2

2 2 2 2 1/

v . =1 b a“+ab+h” 1 2
*yo (e -sin TG - T G v
- cotan t) , (6.4)
and
2 2 2
e _T (v _ a tabth
K3(t,v) = KZ(Z’V) + (t 2) [2 ""EZ"‘] (6.5)
Notice that in the present case, £(s) = r for all s'ssSs'' . Hence,
the moments of V{C} can be determined according to (5.4), (5.7)=(5.9)
and (6.1) in the following manner. .
Let
A = expi- & wPdd) (s''-e" (6.6)
¥ (s) = exp{u[K*(s~g',w) - K*(s-g',u)]} , (6.7)
and
H(s) = exp{u[K*(g9''~s,w) - K*(g''=s,u)]} (6.8)
for s'sssg'!'
Define recursively, for every j21 |,
)
¢ (s) = sj v eureEGE 0 - k3G 0y . (6.9)
The n-th moment of V{C} is then
Tt
un = )\n!rn 3' ‘?n_l(S)H(S)dS R (6.10)

Let Pl be the probability that V{C} = L{C} , which is the proba-
bility that ( 1is completely visible. According to (3.2) and (3.3)

P, = exp{u(K*(s'=g',w) -~ K*(s'=g',u) +

K*(g''=s'',w) = K*(g''=8'",u)]} (6.11)
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The numerical determination of the moments W, Wwas performed in the
following manner. The interval ([s',s''] was partitioned to M sub-
intervals of length A = (s''-s')/M . The grid points for the computa-
tion are then sj-s'+jA » j=0,1,...,M . The functions Wo(s) and G(s)
were computed exactly for each j=0,...,M . The functions Wk(s),kZl ,

were then computed at the grid points sj » according to the numerical
integration formula

——

0 » 1f =0

(S1[>2

(f_q(s)expi2u K P} + ¥, (s)) ) if el
) =4 g (e R @D+ 1) +

j-1

+ 4

~ _i A \
L \Fk_l(si)exp{Zu K (ﬁ—)—2 )} , 1f j=2

where E(t) = K*(t,w) - K*(t,u) . Finally, the n~-th moment of V((C) is
determined by the formula ‘

% n .
uy = Aalral(y (s DH(s ) + ¥ _ (s )H(s ))/2

m~1
+ I ¥ _(s)H(s)} .

j=l 3 3
If the value of M 1is large one obtains very good approximation by
applying formulae (6.12)=-(6.13). In Table 6.1 we provide the first
ten normalized moments of V{C} , i.e., u:/(r(s"-s'))n , for the case

of s' = -7/18, 8'' = -g' , M=60 , r=l , u=.5 , w=,75 , a=.1l and b=.3 .
The values of u (the Poisson intensity) are 1(2)9 .

(6.12)

(6.13)
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Table 6.1 The Normalized Moments of V(C) and Their Beta-Mixture
Approximations, for s'=m/18, s''=-g', M=60, r=l., u=.5,
ws,75, a=.1, b=.3 "

v | Intensity Normalized Moments
b
b %) 1 2 3 4 5 6 7 8 9 10 o
b 1. 0.951 0.934 0.926 0.921 0.918 0.917 0.917 0.919 0.921 0.925 .90l
- 0.951 0.934 0.926 0.921 0.917 0.915 0.913 0.912 0.910 0.910
ﬁ 3. 0.860 0.816 0.794 0.781 0.773 0.768 0.765 0.763. 0.763 0.765 .730
i 0.860 0.816 0.794 0.780 0.772 0.765 0.761 0.757 0.754 0.752
T 5. 0.772 0.713 0.681 0.662 0.650 0.643 0.638 0.634 0.633 0.633 .592
5 0.778 0.713 0.681 0.662 0.649 0.640 0.634 0.629 0.625 0.621
; 7. 0.703 0.623 0.584 0.562 0.548 0.538 0.532 0.527 0.525 0.524 .480
Q 0.703 0.623 0.584 0.562 0.547 0.536 0.528 0.522 0.518 0.514

9. 0.636 0.545 0.502 0.477 0.461 0.451 0.444 0.439 0.435 0.434 .389

0.636 0.545 0.502 0.477 0.460 0.449 0.440 0.434 0.429 0.425

IR 4

s S 1

.........

Notice that u:-Pl .

As in the previous study of Yadin and Zacks ([10], the distribution of
V{C}/x(s''-s') 1is approximated by a mixture of a beta-distribution with
a discrete distribution concentrated on 0 and 1 . The mixed discri-
bution of the normalized visibility measure, V*{C} = V{C}/e(s''-s") ,
has a c.d.f.

0 , if x<0
P (x) =4 P +(1-Ry-P)) ¢ 4oL 1oy 81y 1f Osx<l (6.14)
x .0 B(a 8) E y y vy sX< '
1l , 1£f x21

]
Since the value of Pl is known, we datermine £ (x) , in the various
cases, by equating the first three moments of (6.14) to the moments of
*
V (€} . The n-th moment of (6.14) is

) a(a+l)...(a+n=1) a2l
1’ (a+8) (a+8+l)...(a+84+n=1) °’ (6.15)

un = Pl + (l-PO-P
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'Accordingly, if ¢,
263 (e +c)
2 371 "2
a = 2 ’
¢ C37¢y |

_ {egmep)(eyey)

B 7 (6.16)
€1%37¢2
and ¢, (a+8)
Bo = 1P -~ —
1/2

2
) , Po,Pl, @ and 8

In Table 6.2 we provide the values of g = (u;-(u:)
corresponding to the cases of Table 6.1. We have also computed the
first ten moments of (6.14) according to the parameters determined by
the true moments, u: , and presented them in Table 6.1 (lower line of
‘each case).

We see that the actual moments and the ones of the approximating dis-
“tribution are extremely close. This indicates that the mixed-beta
distribution is apparently very close to the true one. We obtain in
this manncr also an estimate of the probability of complete coverage,
PO . An explicit formula for this parameter is not yet available.

Table 6.2 Parameters of the Mixed-Beta Approximating Distribution

(Specifying parameters as in Table 6.1)

Intensity
u g Po Pl a 8
1 .1733 | .0020 {.9005 {1.1161] 1.0398
3 .2765 | .0152 | .7302 |1.1405{ 1.0967
5 .3290 |[.0326 | .5921 |1.0956f 1.1194
7 .3590 | .0536 |.4801 |1.0450{ 1.1386
9 .3754 | .0768 |.3893 |0.9937| 1.0967




In order to realize the effect of different case parameters on the

%*
results, we present in Table 6.3 the first 10 moments, By o of

v (C) , for a longer curve (s'=-m/3, s''==g') . The computation
was performed on a grid of M=180 subintervals. The intensities

u are 1(2)9, and the distribution of the disk diameters
is uniform on (0.1,0.3).

We do not present the moments of (6.14), which correspond to these

cases, since they are very close to the actual moments. The Pesults
of the computations presented in Table 6.3 show similar trends to
* those indicated in Tables 6.1 and 6.2.

’ s
Table 6.3 Normalized Moments, V (C) , And The Parameters of The Mixed
Beta Distribution for the Cases Of s'=-g/3, s''s-s', r=l.,
u=.5, w=,75, a=.1, b=.3 and M=180.

.951 .912 .880 .854 .832 .814 .799 .787 .776 .767 .686
.860 .758 .682 .623 .577 L5641 511 .487 .467 .451 .322
.778 .631 .529 .456 .402 .360 .328 .303 .282 .266 .152
.703 .526 .412 .335 .280 .241 .212 .189 .171 .157 .0Q71
.636 .438 .321 .246 .196 .162 .137 .118 .104 .094 .033

g~
O N wm W e

Table 6.5 Parameters of The Mixed-Beta Approximating Distributiom

(Specifying Parameters as in Table 6.3)

;f o o] Po Pl o 8

. 1 .085 O  .6856 15.8793 2.9360
g 3 .1364 O  .3223 8.9669 2.3286
! 5 .1619 O  .1515 6.3166 2.2383
' 7 .1762 0  .0712 4.9572  2.3287
. 9 .1838 0  .0335 4.1394 2.5105
F
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